



#### **ARSET**

**Applied Remote Sensing Training** 

http://arset.gsfc.nasa.gov



# Advanced Webinar on using NASA Remote Sensing for Flood Monitoring and Management

#### Instructors:

- Amita Mehta (ARSET)
- Elena Cristofori (Guest Speaker, TRIM)

Week-1

www.nasa.gov

## **Course Structure**

- One session per week on March 16, 23, 30, and April 6, 2016
  - 8:00 a.m. 9:00 a.m. EDT (UTC-4) for Europe, Africa, the Middle East, and Southeast Asia
  - 4:00 p.m. 5:00 p.m. EDT (UTC-4) for the Americas and Asia-Pacific
- · Each session will include
  - Presentations
  - Demonstrations and instructions for hands-on exercises for selected flood cases
  - A homework assignment
- Q & A following each session or by email to Amita Mehta (amita.v.mehta@nasa.gov)

### Prerequisite

### **NASA Remote Sensing Observations for Flood Management**

http://arset.gsfc.nasa.gov/disasters/webinars/nasa-remote-sensing-observations-flood-management



- Week 1: About ARSET & NASA Remote Sensing Data for Flood Management, Intro to Flood Monitoring Tools
- Week 2: Overview of TRMM-based Flood Monitoring Tools
- Week 3: Demonstration of the MODIS-based Inundation Mapping



### **Course Material**

http://arset.gsfc.nasa.gov/disasters/webinars/advfloodwebinar

### Webinar presentations, exercises, homework assignments, and recordings



| Course materials |                                                                                                     |                                 |
|------------------|-----------------------------------------------------------------------------------------------------|---------------------------------|
| Date             | Title                                                                                               | Materials                       |
| March 15, 2016   | View Week 1, Week 2, and Week 3 of NASA Remote<br>Sensing Observations for Flood Management         | Homework - due March<br>15      |
| March 16, 2016   | Demonstration of Flood Mapping Web Tools Based on<br>NASA Remote Sensing Observations of Rainfall   | Recording<br>Slides<br>Homework |
| March 23, 2016   | Demonstration of Flood Mapping Web Tools Based on<br>NASA Remote Sensing Observations of Land Cover | Recording<br>Slides<br>Homework |
| March 30, 2016   | Overview and Access to Ancillary NASA Data for Flood<br>Management                                  | Recording<br>Slides<br>Homework |
| April 6, 2016    | Flooding Case Studies Using NASA Web Tools and GIS                                                  | Recording<br>Slides<br>Homework |

Links will be available here

# Homework and Certificate

#### Homework

- Hands-on exercises
- Answers to homework questions via Google form
- Available at <a href="http://arset.gsfc.nasa.gov/disasters/webinars/advfloodwebinar">http://arset.gsfc.nasa.gov/disasters/webinars/advfloodwebinar</a>

### Certificate of Completion

- Attend all 4 webinar sessions
- Complete all 4 homework assignments
- Certificates will be emailed approx. 2 months after the course finishes by Marines Martins (<u>marines.martins@ssaihq.com</u>)

# **Course Objectives**

- Provide demonstrations and step-bystep instructions of NASA remote sensing-based flood monitoring tools
  - Access rainfall, streamflow, and flood intensity maps
  - Access surface inundation maps
  - Access terrain and socioeconomic data
- Provide hands-on exercises of select flood cases to learn flood risk assessment and post-flood relief planning using NASA remote sensing and ArcGIS



MODIS-based inundation mapping

# **Course Outline**

Week 1: Demonstration of Flood Mapping Web Tools Based on NASA Remote Sensing Observations of Rainfall



Week 3: Overview & Access to Ancillary NASA Data for Flood Management



Week 2: Demonstration of Flood Mapping Web Tools Based on NASA Remote Sensing Observations of Land Cover



Week 4: Flooding Case Studies Using NASA Web Tools and GIS



# Flood Cases for In-Session Exercise

- Morning Session:
  - Flooding in Malawi (10-12 Jan 2015)



Image Credit: Preliminary Response Plan – Malawi Floods 2015, UN Office for the Coordination of Humanitarian Affairs, Government of Malawi

- Afternoon Session
  - Flooding in Oklahoma & Texas (12-15 May 2015)



Image Credit: IMERG/GPM Total Rainfall

# Flood Cases for Homework Exercise

- Morning Session:
  - Flooding in Pakistan (Jul-Aug 2015)
  - Flooding in India (Nov-Dec 2015)



Image Credit: Indian Navy

- Afternoon Session
  - Mississippi River Flooding (Jan 2016)
  - Flooding in Bolivia & Peru



Image Credit: USGS

# Agenda: Week 1

- Review of NASA flood monitoring tools
- Overview of NASA/USAID SERVIR
- Demonstration and hands-on exercise of accessing Rainfall, Streamflow, and Flood Intensity from Global Flood Monitoring System (GFMS)
- Overview and hands-on exercise of using Extreme Rainfall Detection System (ERDS) for Flood Early Warning



### NASA Remote Sensing Observations for Flood Monitoring

http://arset.gsfc.nasa.gov/sites/default/files/users/Flood\_Week1\_8June2015\_Final.pdf

There are primarily 3 types of flood monitoring tools that use remote sensing observations:

- Derive streamflow & runoff to monitor flooding conditions by using rainfall and weather data in a hydrology model
  - Global Flood Monitoring System (GFMS) <a href="http://flood.umd.edu">http://flood.umd.edu</a>
  - NASA and US Agency for International Development SERVIR: <a href="http://www.servirglobal.net">http://www.servirglobal.net</a>
- 2. Infer flooding conditions by using satellite-derived precipitation
  - Extreme Rainfall Detection System (ERDS):
    http://playground.ithacaweb.org/apps/world/leaflet/erds2.html/#layers
- 3. Detect flood water on previously dry land surfaces by using satellite-derived land-cover observations
  - MODIS NRT Global Flood Mapping: <a href="http://oas.gsfc.nasa.gov/floodmap/">http://oas.gsfc.nasa.gov/floodmap/</a>
  - Dartmouth Flood Observatory: <a href="http://floodobservatory.colorado.edu/">http://floodobservatory.colorado.edu/</a>

# Flood Monitoring Using NASA Rainfall Observations

- 1. Derive streamflow & runoff to monitor flooding conditions by using rainfall and weather data in a hydrology model
  - Global Flood Monitoring System (GFMS) http://flood.umd.edu



- NASA and US Agency for International Development SERVIR : <a href="http://www.servirglobal.net">http://www.servirglobal.net</a>
- 2. Infer flooding conditions by using satellite-derived precipitation
  - Extreme Rainfall Detection System (ERDS):
    <a href="http://playground.ithacaweb.org/apps/world/leaflet/erds2.html/#layers">http://playground.ithacaweb.org/apps/world/leaflet/erds2.html/#layers</a>



### NASA Rainfall Observations Used in GFMS, SERVIR, & ERDS2

Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA)

- Combines precipitation from TRMM and several national/international satellites to obtain 3-hourly, 0.25°x0.25° resolution data with global coverage between 50°S to 50°N
- TMPA will be replaced with Integrated Multi-SatellitE Retrievals (IMERG) for Global Precipitation Measurement (GPM) data with halfhourly, 0.1°x0.1° resolution and global coverage between 65°S to 65°N



Note: TRMM is no longer flying, but TRMM-based calibration is used to provide near real-time rainfall from a constellation of national & international satellites for flooding applications. Near real-time IMERG data is also available from: <a href="mailto:ftp://jsimpson.pps.eosdis.nasa.gov">ftp://jsimpson.pps.eosdis.nasa.gov</a>



### **SERVIR GLOBAL**

- Works in 30 countries
- Remote Sensing-based data products and training available via websites
- Flood monitoring and mapping based on TMPA rainfall and CREST hydrologic model



https://www.servirglobal.net/

## **SERVIR** Regional Activities



SERVIR-Eastern and Southern Africa initiative, helps nations like Malawi use geospatial technologies to reduce disaster risk and enhance capacity in disaster management.



https://www.servirglobal.net/Global/Activity-Mapper?hub=africa

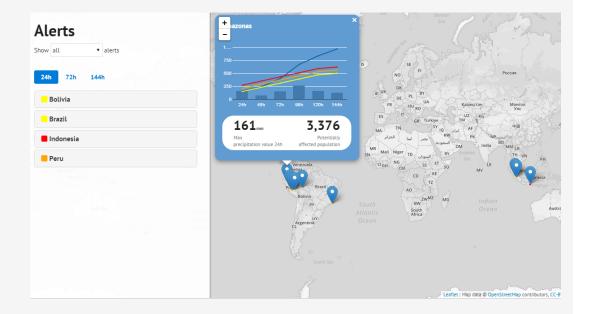


### **GFMS**

#### http://flood.umd.edu

- Provides global maps, time series, and animations (50°S-50°N) of instantaneous and accumulated rain over 24, 72, and 168 hours
- Streamflow rates and flood detection at 1/8<sup>th</sup> degree (~12km) and 1km
- Uses a hydrological model together with:
  - TMPA
  - Surface temperature and winds from NASA reanalysis model MERRA
  - Runoff generation from UW Variable Infiltration Capacity (VIC)
  - Runoff routing model from UMD








### **ERDS**

#### http://erds.ithacaweb.org/

- Uses near-real time TRMM and NOAA-Global Forecasting System (GFS) data for the monitoring and forecasting of accumulated rainfall
- TRMM historical archive is used for the calculation of extreme rainfall thresholds
- The combination of TRMM near realtime rainfall amount and GFS forecasted rainfall information, along with reference data are used to generate value-added and flooding event-specific information



### **ERDS**

#### http://erds.ithacaweb.org/

- Provides global maps and time series of near-real time (50°S-50°N) and forecasted accumulated rainfall over 24, 48, 72, 96, 120 and 144 hours
- Provides extreme rainfall alerts at at 0.25°x0.25° level and at administrative districts level
- Provides event-specific information such as the list of the affected countries and an estimation of the affected population
- Currently the ERDS system is one of the tools used by OMEP, UN World Food Programme (WFP) Emergency Preparedness Unit





## Coming Up Next Week

Flood Mapping Web Tools Based on NASA Remote Sensing Observations of Land Cover

- Demonstration and hands-on exercises on inundation mapping using remote sensing of land cover from Terra and Aqua – Moderate Resolution Imaging Spectroradiometer (MODIS)
  - Dartmouth Flood Observatory
  - MODIS Near Real-Time Global Flood Mapping
  - Exercise of MODIS Flood Mapping using QGIS

# Thank You

The recording of today's session will be available shortly at <a href="http://arset.gsfc.nasa.gov/disasters/webinars/advfloodwebinar">http://arset.gsfc.nasa.gov/disasters/webinars/advfloodwebinar</a>